Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: in search of microorganism-specific tryptic peptides enabling discrimination of subspecies.
نویسندگان
چکیده
A well-accepted method for identification of microorganisms uses matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to analysis software which identifies and classifies the organism according to its ribosomal protein spectral profile. The method, called MALDI biotyping, is widely used in clinical diagnostics and has partly replaced conventional microbiological techniques such as biochemical identification due to its shorter time to result (minutes for MALDI biotyping versus hours or days for classical phenotypic or genotypic identification). Besides its utility for identifying bacteria, MS-based identification has been shown to be applicable also to yeasts and molds. A limitation to this method, however, is that accurate identification is most reliably achieved on the species level on the basis of reference mass spectra, making further phylogenetic classification unreliable. Here, it is shown that combining tryptic digestion of the acid/organic solvent extracted (classical biotyping preparation) and resolubilized proteins, nano-liquid chromatography (nano-LC), and subsequent identification of the peptides by MALDI-tandem TOF (MALDI-TOF/TOF) mass spectrometry increases the discrimination power to the level of subspecies. As a proof of concept, using this targeted proteomics workflow, we have identified subspecies-specific biomarker peptides for three Salmonella subspecies, resulting in an extension of the mass range and type of proteins investigated compared to classical MALDI biotyping. This method therefore offers rapid and cost-effective identification and classification of microorganisms at a deeper taxonomic level.
منابع مشابه
Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage
INTRODUCTION Cartilage protein distribution and the changes that occur in cartilage ageing and disease are essential in understanding the process of cartilage ageing and age related diseases such as osteoarthritis. The aim of this study was to investigate the peptide profiles in ageing and osteoarthritic (OA) cartilage sections using matrix assisted laser desorption ionization mass spectrometry...
متن کاملBiotyping Saccharomyces cerevisiae strains using Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS)
متن کامل
Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii.
We evaluated the usefulness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for Cryptococcus identification at the species and subspecies levels by using an in-house database of 25 reference cryptococcal spectra. Eighty-one out of the 82 Cryptococcus isolates (72 Cryptococcus neoformans and 10 Cryptococcus gattii) tested were correctly identified w...
متن کاملSequencing of argentinated peptides by means of matrix-assisted laser desorption/ionization tandem mass spectrometry.
Argentinated peptide ions are formed in abundance under matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) conditions in the presence of Ag+ ions. These argentinated peptide ions are fragmented facilely under MALDI-MS/MS conditions to yield [b(n) + OH + Ag]+, [b(n) - H + Ag]+ and [a(n) - H + Ag]+ ions that are indicative of the C-terminal sequence. These observations paral...
متن کاملThe use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis.
Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 80 14 شماره
صفحات -
تاریخ انتشار 2014